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Abstract 
The general theory developed by Michalski [Acta Cryst. 
(1988), A44, 640-649] has been applied to the cases of 
hexagonal and rhombohedral structures. The symbols of 
stacking faults based on Zhdanov's symbols of local structure 
near the faults have been introduced and assigned to the 
formal subscripts j, k used in general theory. On this basis the 
regularities, according to which the faults with different 
subscripts j, k have the same structures, have been 
characterized. Then these regularities have been taken into 
consideration in the derivation of expressions for measurable 
parameters of changes (caused by faults) in the X-ray intensity 
distribution. The results obtained for structures 2H, 4H, 
6H(33), 8H(44), 10H(55), 12H(66), 3C, 9R(12)3, 12R(13)3 and 
15R(23)3 are given. Some results are compared with published 
data. The physical meaning of the assumption of small values 
of fault probabilities is discussed. 

1. Introduction 
Warren (1959) has indicated that two types of stacking faults 
can occur in the simplest case of hexagonal polytypes with 2H 
structure. The probability of occurrence of the so-called 
deformation fault with the layer sequence ... ABAB:CACA... is 
denoted by a and of the growth fault with the layer sequence 
...ABAB:CBCB... by β. Warren (1959) showed that there are 
no X-ray diffraction peak displacements and no peak 
asymmetry as a result of either deformation or growth faults, 
but peak broadening does occur. 

In the case of hexagonal polytypes with 4H structure Prasad 
& Leie (1971) distinguished the following types of possible 
faults: intrinsic c, h, 2c, 2h, 3c, 3h, ch and extrinsic 4c and cch. 
The probabilities of occurrence of these faults have been 
denoted by the above symbols written as subscripts to α. The 
integrated intensity, peak shifts, peak broadenings and peak 
asymmetry have been chosen as measurable parameters of 
changes in the X-ray intensity distribution caused by the 
faults. The seven independent combinations of fault 
probabilities evaluated by 
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Prasad & Lele (1971) show the influence of all possible faults 
on the above parameters. 

For the case of 6H(33) polytypic structures Pandey & 
Krishna (1976) denoted the probabilities of occurrence of the 
intrinsic faults by symbols αi. In this notation the subscripts i 
are the successive numbers, from 1 to 18, assigned to 
particular faults. Pandey & Krishna (1976) summarized the 
diffraction effects in the faulted 6H(33) structure as follows: 
(i) reflexions with H – K � 3N are unaffected by faulting; (ii) 
all reflexions with H — K = 3N are broadened as a result of 
faulting; (iii) there is change in the intensity of the peak 
maxima; and (iv) reflexions with H - K � 3N,  L= 6M ± 1 and 
L= 6M ± 2 also exhibit peak shifts. 

A description of the influence of the faults on the X-ray 
diffraction pattern for the case of the 8H(44) polytypic 
structure has been given by Michalski, Demianiuk, Kaczmarek 
& Zhmija (1981). 

For hexagonal polytypes, with the period of identity more 
than 8, there is no earlier description of the influence of the 
faults on X-ray diffraction patterns. 

In the simplest case of rhombohedral structure, i.e. that of 
the 3C structure, the symbols α and β were sufficient for fault 
notation. Following Warren (1959) the probability of 
occurrence of single deformation faults is denoted by a and 
twin or growth faults by β. The deformation faults give rise to 
the shifts, broadenings and asymmetry of reciprocal-lattice 
points, whereas the twin faults produce only the broadenings 
(Warren, 1959). 

In the case of the 9R(12)3 structure, symbols c, h, hc, hhc 
and 3c have been used by Leie (1974a) for notation of 
different stacking faults. From the process of fault formation, 
the first three have been called growth faults and the next two 
deformation faults. From the description of X-ray diffraction 
given by Lele (1974a) all the faults exert some influence on 
the width of reflexions. The integrated intensity and peak 
asymmetry are influenced by h, hc, hhc and 3c faults, whereas 
peak shifts are due to c, hhc and 3c faults. 

In the case of 12R(13)3 structures Lele (1974b) used the 
symbols hhc, c, h, cch, 4h, 2hc and 4c for notation of different 
stacking faults. The differenti- 
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ation of faults is introduced as for 9R(12)3 structures. The first 
four symbols refer to growth faults and the next three to 
deformation faults. All the faults influence the width of 
reflexions. The integrated intensity and peak asymmetry are 
influenced by h, cch, 4h, 2ch and 4c faults. 

It can be seen that only some types of faults in 9R(12)3 and 
12R(13)3 structures have been considered by Lele (1974a,b). 
For rhombohedral polytypes with a longer period of identity 
the description of X-ray diffraction has not yet been published. 

2. Structures of stacking faults in hexagonal and 
rhombohedral polytypes 

 
For synonymous and uniform notation of the faultiness of 
structures, we shall use Zhdanov symbols of crystal structure 
near the faults. This notation contains in brackets the numbers 
of the Zhdanov symbol, which are different from the numbers 
occurring on the same positions in the symbol for a perfect 
structure. Moreover, the last number of the Zhdanov symbol, 
which is not changed as a result of faults, exists before the 
bracket. The notation for twinning faults also contains the first 
number of the Zhdanov symbol which is after the bracket. In 
the nH(n/2,n/2) type of structure the Zhdanov symbols contain 
only one repeated number. In these cases, for notation of faults, 
it is sufficient to give only the numbers occurring in brackets. 

In order to illustrate the method of formation of the Zhdanov 
symbols for faults let us consider in detail two cases of faults, 
in 6H(33) and in 9R(12)3 structures. 

The perfect sequences of layers in the 6H(33) structure are 
given below: 

 
If the faulted layers (forming the faults) with subscripts 1 (e.g. 
C1) occur after a layer with subscript 

 
1 (e.g. A1) instead of the perfect layer with subscript 
2  (e.g. B2), then we obtain the following sequence near the 
fault: 
 

 
On the basis of (1) we can see that the number of ‘ –‘ signs in 
the Hagg symbol for this sequence increases by one. Hence the 
number (4) occurs in the Zhdanov symbol of this fault. 

Table 1. Zhdanov symbols for single non-twinning faults for 
particular values of subscripts j, k  

(a) Structure 4H 

 
j 

 k 
 

1 
 

2 
 

3 
 

4 
 l 

 
(3) 
 

(11) 
 

(5) 
 

(13) 
 2 

 
(31) 

 
(111) 

 
(4) 
 

  (1) 
 3 

 
(5) 
 

(13) 
 

(3) 
 

(11) 
 4 

 
(4) 
 

(1) 
 

(31) 
 

(111) 
  

(b) Structure 9R(12)3 
 
 
 

 
 

 
 

 
 

 
 

j 
 

 
 

 
 

 
 

 
 k 

 
1 
 

2 
 

3 
 

4 
 

5 
 

6 
 

7 
 

8 
 

9  
 l 

 
1(3) 

 
2(3) 

 
1(12) 

 
1(3) 

 
2(3) 

 
1(12) 

 
1(3) 

 
2(3) 

 
1(12) 

 2 
 

1(5) 
 

2(2) 
 

1(1) 
 

1(5) 
 

2(2) 
 

1(1) 
 

1(5) 
 

2(2) 
 

1(1) 
 3 

 
1(4) 

 
2(21) 

 
1(111) 

 
1(4) 

 
2(21) 

 
1(111) 

 
1(4) 

 
2(21) 

 
1(111) 

 4 
 

1(3) 
 

2(3) 
 

1(12) 
 

1(3) 
 

2(3) 
 

1(12) 
 

1(3) 
 

2(3) 
 

1(12) 
 5 

 
1(5) 

 
2(2) 

 
1(1) 

 
1(5) 

 
2(2) 

 
1(1) 

 
1(5) 

 
2(2) 

 
1(1) 

 6 
 

1(4) 
 

2(21) 
 

1(111) 
 

1(4) 
 

2(21) 
 

1(111) 
 

1(4) 
 

2(21) 
 

1(111) 
 7 

 
1(3) 

 
2(3) 

 
1(12) 

 
1(3) 

 
2(3) 

 
1(12) 

 
1(3) 

 
2(3) 

 
1(12) 

 8 
 

1(5) 
 

2(2) 
 

1(1) 
 

1(5) 
 

2(2) 
 

1(1) . 
 

1(5) 
 

2(2) 
 

1(1) 
 9 

 
1(4) 

 
2(21) 

 
1(111) 

 
1(4) 

 
2(21) 

 
1(111) 

 
1(4) 

 
2(21) 

 
1(111) 

  
The perfect sequences of layers in 9R(12)3 structures are 

 
If a faulted layer with subscript 2 (e.g. C2) occurs after a layer 
with subscript 2 (e.g. B2) instead of a perfect layer with 
subscript 3 (e.g. A3) then we obtain the following sequence 
near the fault: 

... C6
-B7

+C8
-B9

-A1
+B2

+: C2
-B3

-A4
+B5

-A6
- .... (2) 

From (2) it is clear that the structure near the fault can be 
described by the Zhdanov symbol 2(2). 

For a hexagonal structure, due to 63 screw axes, the 
Zhdanov symbol consists of an odd set of numbers repeated 
twice. Hence the set of n2/2 types of faults are also repeated 
twice. Specific regularities exist in these repetitions. In order 
to illustrate these regularities, the Zhdanov symbols 
corresponding to all subscripts j, k for 4H structures are given 
in Table 1(a). From this table we can find that the Zhdanov 
symbols of faults are the same for pairs of subscripts (j,k) and 
(j + n/2, k + n/2). Thus for hexagonal polytypes it is sufficient 
to give the Zhdanov symbols of n2/2 faults. 

The Zhdanov symbols corresponding to all the pairs of 
subscripts j, k for the non-twinning faults in 9R(12)3 
rhombohedral structures are given in Table 1(b). The group of 
faults denoted by subscripts j, k = 1, 2, ..., n/3 are repeated nine 
times in this table. This property is characteristic of all 
rhombohedral polytypes because the Zhdanov symbols for 
them consist of sets of numbers repeated three times. 
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It can be shown that pairs of faults, which are 

enantiomorphous with others, exist among the n2/2 types of 
faults in hexagonal structures and n2/9 types of faults in 
rhombohedral structures. Such enantiomorphous pairs of 
faults give identical X-ray diffraction patterns by the rotation 
crystal method. Therefore we have to consider these faults as 
the same fault twice repeated, as was done by Pandey & 
Krishna (1976) for the 6H(33) structure. Thus the number of 
really different types of faults is less than n2/2 in hexagonal 
structures and n2/9 in rhombohedral structures. As an example 
let us consider the faults in nH(n/2,n/2) - type structures. The 
faults denoted by the Zhdanov symbols (n + 1), (n),....(n/2 + 
1) which occur after layers with subscripts j = 1 and the faults 
denoted by the Zhdanov symbols (j - 1), (j - 1, j - 1) and (j - 1, 
1, j - 1) which occur after layers with subscripts j = 2, 3,..., n/2 
are non-repeated. The full number of these faults is 

 
tures. Let us denote the probability of occurrence of this type 
of fault by 〉〈 jkα . 

In order to express the measurable parameters of changes in 
the intensity distribution by probabilities 〉〈 jkα , we shall 
apply the general theory developed in paper I (Michalski, 
1988). 

From the symmetry of the Hagg symbols one can write the 
following relationship between the factors Sj: 

for hexagonal structures, 

 
for rhombohedral structures, 

 
Combining (7) and (8) with the definition of the factors Sjk 

[equation (44) of paper 1] we obtain: 
for hexagonal structures, 

From among the remaining [n(n/2) —(2n —2)] types of faults 
only half are different in reality. Thus the number of all 
possible different types of faults in nH(n/2, n/2) structures is 
 

 
 
For individual polytypic structures we obtain the following 
numbers of the possible types of faults: 
seven for 4H, 14 for 6H(33), 23 for 8H(44), 34 for 10H(55), 47 
for 12H(66) etc. 

Similarly, in the 9R(12)3 structure, there exist the following 
pairs of enantiomorphous faults: 2(21)-1(12), 1(4)2-2(4)1, 
1(3)2-2(3)1 and 1(31)1-1(13)1. 

3. The parameters of changes in the intensity 
distribution 

 
From the previous section it is known that in hexagonal 
structures the faults denoted by pairs of subscripts 
 

 
and in the rhombohedral structures faults denoted by  

)3/2,3/2(),3/2,3/(
),3/2,(),3/,3/2(

)6(),3/,3/(),3/,(
),,3/2(),,3/(),,(

nknjnknj
nkjnknj

nknjnkj
knjknjkj

++++
+++

+++

++

             

 

where S*jk means the complex conjugate of Sjk; for 
rhombohedral structures,  

in the case of non-twinning faults 

in the case of twinning faults 

Substituting (9) into the general theory we obtain the 
following characteristic equations for hexagonal 
structures: 

when k � j, 

have the same sequences of layers. Since these faults are 
indistinguishable, we ought to consider them as one type of 
fault repeated twice in hexagonal structures and repeated nine 
times in rhombohedral struc- 

 
Because Re (Sjk + S*jk) = 2 Re Sjk, (12) and (13) differ from 
equations (22) and (23) of the general theory only in the 
occurrence of the symbols 2 〉〈 jkα instead 
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of αjk. We can prove that the terms J°(m) of the boundary 
conditions for hexagonal structures are real. Thus the final 
formulae for ∆h3, ∆w and Imax in hexagonal structures can be 
obtained by substituting the 2 〉〈 jkα  instead of αjk in the 
general formulae [equations (43), (48), (50) and (52) of paper 
1]. 

Similarly using (10) and (11) we obtain the following 
characteristic equations for rhombohedral structures: 

in the case of non-twinning faults, 

 
From the characteristic equations (14), (15) and (16) we can 

find the coefficients aj and Dm. After substituting them in the 
general equations for ∆h3 and ∆w [equations (42) and (47) of 
paper 1] and some rearrangements we obtain finally: 

in the case of non-twinning faults, 

 
From (17) to (20) shifts and broadenings of reciprocal-lattice 

points may be caused by non-twinning faults whereas the 
twinning faults do not cause shifts. Broadenings for all indexes 
h3 are caused by all types of twinning faults. 

           653 
 

The influence of stacking faults on the intensity peak 
maxima in rhombohedral polytypes is expressed by equation 
(52) of paper 1, because the terms J°(m) in the boundary 
conditions are complex. 

Moreover, it can be shown that for enantiomorphous pairs of 
faults terms 2 〉〈 jkα  instead of 〉〈 jkα ought to be substituted 
in the final expressions for ∆h3, ∆w and Imax. 

 
 

4. Results of calculations for 2H, 4H, 6H(33), 8H(44), 
10H(55), 12H(66), 3C, 9R(12)3, 12R(13)3 and 15R(23)3 

structures 
 

In order to present the result in the shortest and most convenient 
form, we list them in Table 2. This table allows the shifts ∆h3, 
broadenings ∆w and changes in the maximum intensity of the 
reciprocal-lattice points to be expressed by the probabilities of 
occurrence of all possible faults. To express ∆h3, for example, 
by probabilities of particular faults we need to multiply the 
values from the table corresponding to the particular α and h3 
by the reciprocal coefficients which occur before ∆h3 in the 
heading of the table. In the case of faults united by the ‘ = ‘ sign 
we multiply ∆h3 and ∆w and divide Imax(h3) additionally by a 
factor 2. The values of l assigned to rhombohedral structures for 
all fault types are determined by (19). The absence of numbers 
in the table for some peak maxima means that the peak 
maximum of adequate reciprocal-lattice points is unaffected by 
this fault. 
 
 

5. Discussion 
 

The results obtained for shifts ∆h3 and broadenings ∆w of 
reciprocal-lattice points in 2H structures (Table 2a) are in 
accordance with Warren's (1959) results. 

The results obtained for the shifts ∆h3 and broadenings ∆w 
of reciprocal-lattice points in 4H structures (Table 2b) are the 
same as those of Prasad & Lele (1971), although in order to 
describe faultiness these authors have used two more faults 
(cch and 4c) than here; but these [which have Zhdanov symbols 
(41) and (6)] are not single faults. 

The full results obtained for 6H(33) structures (Table 2c) are 
identical to those given by Pandey & Krishna (1976). 

For the 8H, 10H and 12H structures no comparison has been 
given because there are no corresponding results in earlier 
published papers. 

According to Warren (1959), the following relation for 3C 
structures holds: 
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TABLE 2. SHIFTS ∆H3, BROADENINGS ∆W AND PEAK MAXIMA IMAX OF RECIPROCAL-LATTICE POINTS FOR PARTICULAR 〉〈 jkα  

PROBABILITIES 

                     (1/α(i))∆h3(h3) 
 

(π/α(i))∆w(h3) 
 

(3α(i)/ψ2)Imax(h3) 

 
 

h3 
 

h3 
 

h3 
 Zhdanov 

symbol of fault 
±\,±2 
 

±1 
 

±2 
 

±1 
 

±2 
 (2) 

 
0 
 

1 
 

3 
 

9 
 

1 
 (3) 

 
0 
 

3 
 

3 
 

3 
 

1 
 

(b) Structure 4H 
 

 
 

(2π/α(i))∆h3(h3) 

h3 
(π/α(i))∆w(h3) 

h3 
   (α(i)/ψ2)Imax(h3) 

h3 
Zhdanov 

symbol of fault 
4M±1 
 

4M 
 

±1 ±2 
 

4M 
 

±1 
 

±2 
 (4) 

 
0 
 

3 
 

1 3 
 

1/6 
 

3/2 
 

3/2 
 (5) ±2 0 2 4 — 3/4 9/8 

(1) 
 

±1 
 

3 
 

2 1 
 

1/6 
 

3/4 
 

9/2 
 (31)=(13) 0 3 3 3 1/6 1/2 3/2 

(3),(111) 
 

±1 
 

3 
 

2 1 
 

1/6 
 

3/4 
 

9/2 
 (11) 

 
0 
 

0 
 

4 0 
 

— 
 

3/8 
 

— 
 

(c) Structure 6H(33) 
 

(4π/3α(i))∆h3(h3) 
h3 

(2π/α(i))∆w(h3) 
h3 

(α(i)/ψ2)Imax(h3) 

h3 
 
 

Zhdanov symbol of 
fault 

 
6M±1 6M±2 

 
±1 

 
±2 

 
±3 

 
±1 

 
±2 

 
±3 

 (5) ±1       ±1 3 
 

3 
 

6 
 

2/3 
 

2 4/3 
 (6) 0 0 8 

 
0 

 
8 

 
1/4 

 
— 

 
1 

 (12)=(21) 0 0 2 6 2 1/2 1/2 2 
(7), (1) ±1         ±1 3 

 
3 

 
6 

 
2/3 

 
2 

 
4/3 

 (22) ±2 ±2 6 6 0 1/3 1 — 
(14)=(41) ±2 ±2 2 

 
6 

 
8 

 
1/2 

 
1/2 

 
1/2 

 (2) ±1 ±1 5 3 2 2/5 2 4 
(111), (4,2)=(2,4) 0 0 6 

 
6 

 
6 

 
1/3 

 
1 

 
4/3 

 (4), (211)=(112) ±1 ±1 5 3 2 2/5 2 4 
(11), (212) ±2 ±2 6 

 
6 

 
0 

 
1/3 

 
1 

 
— 

  

 
h3 

 Number 
 

8M 
 

8M±1 
 

8M±2 
 

8M±3 
 

8M±4 
 1,10 

 
1/12 

 
3/8(3-2�2) 

 
9/4 

 
3/8(3+2�2) 

 
1/4 

 2,7 
 

— 
 

3/8(10-7�'2) 
 

9/8 
 

3/8(10+7�2) 
 

9/16 
 3,8 

 
1/12 

 
3/28(8-5�2) 

 
9/8 

 
3/28(8+5�2) 

 
9/4 

 4 
 

1/12 
 

3/4(3-2�2) 
 

1/4 
 

3/4(3+2�2) 
 

1/4 
 5 

 
1/24 

 
1/8(3-2�2) 

 
3/8 

 
1/8(3+2�2) 

 
3/8 

 6 —. 3/16(3-2�2) — 3/16(3+2�2) — 
9, 14 

 
— 

 
3/8(3-2�2) 

 
9/16 

 
3/8(3+2�2) 

 
— 

 11 — 3/8(2-�2) 9/8 3/8(2+�2) 9/16 
12, 13 

 
1/12 

 
3/28(16-�2) 

 
9/8 

 
3/28(16+�2) 

 
9/4 

 

(g) Structure 10H(55): shifts (2π/α(i))∆h3(h3) 

 
h3 

    
 
 

 
Zhdanov symbol 

10M±1 
 

10M±2 
 

10M±3 
 

10M±4 
 1 

 
(7) 
 

±b 
 

±a 
 

(-)±a 
 

(-)±b 
 2 

 
(8) 
 

(-)±2b 
 

±2a 
 

±2a 
 

(-)±2b 
 3 

 
(12)=(21) 

 
±b 
 

(-)±a 
 

(-)±a 
 

±b 
 4 

 
(22) 

 
(-)±2a 

 
±2b 
 

(-)±2b 
 

±2a 
 5 

 
(13) =(31), (9), (414) 

 
±a 
 

(-)±b 
 

±b 
 

(-)±a 
 6 

 
(1),(24)=(42) 

 
(-)±a 

 
±b 
 

(-)±b 
 

±a 
 7 (2) ±2b (-)±2a (-)±2a ±2a 

8 
 

(16) =(61), (34) =(43) 
 

(-)±b 
 

±a 
 

±a 
 

(-)±b 

 9 (44) ±2b ±2a (-)2a (-)2b 
10 
 

(26) =(62), (111), (3) 
 

(-)±b 
 

(-)±a 
 

±a 
 

±b 
 11 

 
(36)=(63),(112)=-(211) 

 
±2a 
 

±2b 
 

±2b 
 

±2a 
 12 

 
(4) 
 

(-)±a 
 

(-)±b 
 

(-)±b 
 

(-)±a 
 13 

 
(6),(114)=(411), 

 
±a 
 

±b 
 

±b 
 

±a 
  (213)-(312)     14 

 
(11), (214)=(412), (313) 

 
(-)±2b 

 
(-)±2a 

 
±2a 
 

±2b 
 15 

 
(314)=(413) 

 
±b 
 

(-)±a 
 

(-)±a 
 

±b 
 16 (14)=(41) 0 0 0 0 

17 (11),(33) 0 0 0 0 
18 
 

(10), (23)=(32) 
 

0 
 

0 
 

0 
 

0 
 19 (113)=(311),(212), 0 0 0 0 

 (46) =(64) 
 

    
a = sin(π/5), b = sin (2π/5), c = cos(π/5), d =cos (2π/5). 

 

(h) Structure 10H(55): broadenings (π/α(i))∆w(h3) 
(d) Structure 8H(44): shifts (4π/α(i))∆h3(h3) 

h3 

  
 
Number 

 

Zhdanov symbol 
of faults 

 
8M±l 
 

8M±2 
 

8M±3 
 l 

 
(6) 
 

±2 
 

0 
 

(-)±2 
 2 

 
(7) 
 

(-)±2�2 
 

±4 
 

(-)±2�/2 
 3 (3l3).(12)=(2l)  ±�2 (-)±2 ±�2 

4 
 

(13)=(31),(8) 
 

0 
 

0 
 

0 
 5 (53)=(35),(112)=(211) 0 0 0 

6 (22) 0 0 0 
7 
 

(1) 
 

±2�2 
 

(-)±4 
 

±2�2 
 8 

 
(9), (23) =(32) 

 
(-)±�2 
 

±2 
 

(-)±�2 
 9 (33) ±4 0 (-)±4 

10 
 

(2),(51)=(15) 
 

(-)±2 
 

0 
 

±2 
 11 (111), (52) =(25) ±2�2 ±4 ±2�2 

12 
 

(3) 
 

±�2 
 

(-)±2 
 

(-)±2 
 13 

 
(5),(113)=(311),(212) 

 
±�/2 
 

±2 
 

±�2 
 14 

 
(11),(213)=(312) 

 
(-)±4 
 

0 
 

±4 
 

 

 h3 
 Number 

 
10M 

 
10M±1 

 
10M±2 

 
10M±3 

 
10M±4 

 
10M±5 

 1,10 
 

3 
 

g 
 

f 
 

f 
 

g 
 

3 
 2,7 

 
0 
 

k 
 

i 
 

j 
 

l 
 

8 
 3,8,15 3 h f e g 1 

4, 17 0 i l l i 0 
5,6 
 

3 
 

f 
 

g 
 

g 
 

f 
 

3 
 9,14 0 l i i l 0 

11 
 

0 
 

j 
 

l 
 

k 
 

i 
 

4 
 12,13 

 
3 
 

e 
 

g 
 

h 
 

f 
 

1 
 16 0 4 0 4 0 4 

18 
 

3 
 

1 
 

3 
 

1 
 

3 
 

1 
 19 

 
3 
 

3 
 

3 
 

3 
 

3 
 

3 
 

(i) Structure 10H(55): peak maxima )()/( 3max
2

)( hIi ψα  

(e) Structure 8H(44): broadenings (π/α(i))∆w(h3) 
h3 

 Number 
 

8M 
 

8M±1 
 

8M±2 
 

8M±3 
 

8M±4 
 1, 10 

 
3 
 

2 
 

1 
 

2 
 

3 
 2.7 

 
0 
 

�2+2 
 

2 
 

�2-2 
 

4 
 3.8 

 
3 
 

1/2(�2-4) 
 

2 
 

l/2(�2+4) 
 

1 
 4 3 1 3 1 3 

5 
 

3 
 

3 
 

3 
 

3 
 

3 
 6 0 4 0 4 0 

9, 14 
 

0 
 

2 
 

4 
 

2 
 

0 
 11 0 �2-2 -» �2+2 4 

12, 13 
 

3 
 

1/2(�2+4) 
 

2 
 

1/2(�2-4) 
 

1 
 

h3 
 

 
 10M 

 
10M±1 

 
10M±2 

 
10M±3 

 
10M±4 

 
10M±5 

 1.10 
 

0.067 
 

0.02757 
 

0.5773 
 

3.4530 
 

2.0410 
 

0.2 
 2,7 

 
— 
 

0.03343 
 

0.1900 
 

10.767 
 

3.4100 
 

0.0375 
 3,8, 15 0.033 0.02588 0.2886 0.7320 1.1596 0.3 

4, 17 
 

 0.02420 
 

0.4975 
 

2.9758 
 

1.3025 
 

— 
 5.6 

 
0.067 

 
0.07350 

 
0.0297 

 
1.7810 

 
3.9568 

 
0.2 
 9, 14 — 0.06334 17.0498 1.1366 0.7121 — 

11  0.11460 8.4562 0.7854 0-6512 0.075 
12, 13 

 
0.067 

 
0.03116 

 
0.2012 

 
2.0925 

 
3.9568 

 
0.6 
 16 — 0.00486 — 0.2285 — 0.033 

18 0.067 0.08754 0.2292 4.1125 1.5708 0.6 
19 
 

0.067 
 

0.00973 
 

0.2292 
 

0.4569 
 

1.5708 
 

0.033 
 

(a) Structure 2H (f) Structure 8H(44): peak maxima )()/( 3max
2

)( hIi ψα  

c = �(5 + 4c - a2) =20.8090, f = �(5 - 4c - a2) = 1.1910, g = �(5 + 4d - b2) = 2.3090, h = �(5 - 
4d - b2) = 1.6910, i = 2�(2 + 2c - a2) = 3.6180, j = 2�(2 - 2c - a2) = 0.3820, k = 2�(2+ 2d - b2) = 
2.6180, l = 2�(2 - 2d - b2) = 1.3820. 
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( j )  Structure 12H(66): shifts (4π/a (i))∆h3(h3) 
 
 

Numb
er 

 
 

Zhdanov symbol of faults 
 

 
 

12M±1 
 

h 3  
 

1 2 M± 3  
 

 
 

12M ±4 
 

 
 

12M±5 
 l 

 
(8) 

 
±�3 

 
0 
 

�'3 
 

�3 
 2 

 
(9) 

 
- ±4 

 
±4 
 

0 
 

- ±4 
 3 

 
(12) = (21) 

 
±2 
 

- ±2 
 

0 
 

±2 
 4 

 
(22) 

 
- ±2�3 

 
0 
 

- 
±2�3 

±2�3 
 5 

 
(10),(13) = ( 3 n  

 
±�3 

 
0 
 

±�3 
 

- ±�3 
 6 

 
(14) = (41) 

 
- ±2 

 
- ±4 

 
±2�3 

 
- ±4 

 7 
 

(11),(23) = (32) 
 

±1 
 

±2 
 

- ±�3 
 

±1 
 8 

 
(25) = (52) 

 
±2 
 

±2 
 

- 
±2�3 

- ±2 
 9 

 
(13), (1), (34) = (43) 

 
- ±l 

 
- ±2 

 
±�3 

 
- ±l 

 10 
 

(17) = (71), (44) 
 

±2�3 
 

0 
 

±2�3 
 

- ±2�3 
 11 

 
(35) = (53), (2) 

 
- ±�3 

 
0 
 

- ±�3 
 

±�3 
 12 (3) ±4 - ±4 0 ±4 

13 
 

(27) = (72), (45) = (54) 
(111) 

- ±2 
 

±2 
 

0 
 

- ±2 
 

14 
 

(55) 
 

±2�3 
 

0 
 

- 
2 3 

- ±2�3 
 15 

 
(112) = (211),(4) (37) = 

(73) 
 

- ±�3 
 

0 
 

±�3 
 

±�3 
 

16 
 

(113) = (311),(212) 
(47) = (74) 

 

±2 
 

±4 
 

±2�3 
 

±2 
 

17 
 

(5) 
 

- ±l 
 

- ±2 
 

- ±�3 
 

- ±l 
 18 

 
(115) = (511),(313) 

(214) = (412), (7) 
 

±1 
 

±2 
 

±�3 
 

±1 
 

19 
 

(215) = (512),(1,1) 
(314) = (413) 

- ±2�3 
 

0 
 

±2�3 
 

±2�3 
 

20 
 

(315) = (513),(414) 
 

±2 
 

- ±2 
 

0 
 

±2 
 21 

 
(415) = (514) 

 
±�3 

 
0 
 

±�3 
 

±�3 
 22 

 
(515) 

 
- ±2 

 
- ±4 

 
±2�3 

 
- ±2 

 23 
 

(12), (33) 
 

0 
 

0 
 

0 
 

0 
 24 

 
(15) = (51), (24) = (42) 

 
0 
 

0 
 

0 
 

0 
 25 

 
(114) = (411),(15) = 

(51) (213) = (312) 
 

0 
 

0 
 

0 
 

0 
 

(k) Structure 12H(66): broadenings (π/α(i))∆w(h3) 
 
 

 
 

h3 
 

  
 

Number 
 

12M ±l 
 

1 2 M± 3  
 

1 2 M± 4  
 

12M±5 
 1, 15 

 
5/2 

 
1 
 

3/2 
 

5/2 
 2, 12 

 
2 
 

2 
 

0 
 

2 
 3, 13, 20 

 
2 
 

2 
 

3 
 

2 
 4, 10 

 
3 
 

0 
 

3 
 

3 
 5, 11, 21 

 
3/2 

 
3 
 

3/2 
 

3/2 
 6,  8,  22 

 
2 + �3 

 
2 
 

3 
 

2-�3 
 7, 9 

 
1/2(4-�3) 

 
2 
 

3/2 
 

1/2(4+�3) 
 14, 19 

 
1 
 

4 
 

3 
 

1 
 16 

 
2-�3 

 
2 
 

3 
 

2 + �3 
 17, 18 

 
1/2(4 + �3) 

 
2 
 

3/2 
 

1/2(4-�3) 
 23 4 4 0 4 

24 
 

1 
 

1 
 

3 
 

1 
 25 

 
3 
 

3 
 

3 
 

3 
 

(l) Structure 12H(66): peak maxima (α( i )/ψ2)Imax(h3) 
 
 

Number 
 

 
 

12M ±1 
 

h3 
 

1 2 M± 3  
 

 
 

1 2 M± 4  
 

 
 

12M±5 
 1,15 

 
2/5(2-�3) 

 
2 
 

4 
 

2/5(2 + �3) 
 2,12 

 
1/2(2-�3) 

 
1/4 

 
- 
 

1/2(2 + �3) 
 3,13,20 

 
1/2(2-�3) 

 
- 
 

2 
 

1/2(2 + �3) 
 4,10 

 
1/3(2-�3) 

 
- 
 

2 
 

1/3(2 + �3) 
 5,11,21 

 
2/3(2-73) 

 
2/3 

 
4 
 

2/3(2 + �3) 
 6, 8, 22 

 
7-4�3 

 
 
 

2 
 

7 + 4�3 
 7,9 

 
2/13(5-2�3) 

 
1 
 

4 
 

2/13(5 + 2�3) 
 14., 19 2-�3 

 
1/2 

 
2 
 

2 + �3 
 16 

 
1 
 

5/2 
 

2 
 

1 
 17, 18 

 
2/13(11-6�3) 

 
1 
 

4 
 

2/13(11+6�3) 
 23 

 
1/4(2-�3) 

 
1/2 

 
 
 

1/4(2 + �3) 
 24 

 
1/2(2-�3) 

 
1 
 

1 
 

1/2(2 + �3) 
 25 

 
1/6(2-�3) 

 
1/3 

 
1 
 

1/6(2+�3) 
 

(n )  Structure 9R(12)3: shifts (4π/9α(i))∆h3(h3) 
 
 

Zhdanov symbol of 

 
 

l 
 

 
 

9M±1 
 

h3 
 

9M±2 
 

 
 

9M±4 
 2(3) 

 
1 

 
b 

 
±d 

 
±a 

 1(3) 
 

2 
 

d 
 

±a 
 

- ±b 
 1(12) = 2(21) 

 
3 

 
c 

 
- ±c 

 
         ±c 

 1(4) 
 

4 
 

a 
 

- ±b 
 

- ±d 
 1 ( 1 1 0 , 2 ( 2 )  

 
5 

 
a 

 
±b 

 
±d 

 1(5) 
 

6 
 

- ±c 
 

-  ±c 
 

- ±c 
 1 ( 1 )  

 
7 

 
- ±d 

 
- ±a 

 
±b 

 
a = sin (π/9) = 0.3420,   b = sin (2π/9) = 0.6428,       c = sin (π/3) = 0.8660,       d =  
sin (4π/9) = 0.9848. 

( o )  Structure 9R(1 2 ) 3 :  broadenings (π/α(i))∆w(h3) 
 
 

 
 

h3 
 

 
 

l 
 

9 M ± 1  
 

9M±2 
 

9M±4 
 

1 
 

e 
 

f 
 

g 
 2, 7 f g e 

3, 6 
 

h 
 

h 
 

h 
 4, 5 

 
g 

 
e 

 
f 

 
e = 5.5528, f= 8.2186, g = 13.2286, h = 11.25. 

( p )  Structure 9R(12)3: peak maxima [102α(i)
2/ψ2(h3)]Imax(h3) 

 
 

 
 

h, 
 

 
 

l 
 

9 M ± 1  
 

9M±2 
 

9M±4 
 

1 
 

- ±1l.77 
 

±2.29 
 

- ±7.33 
 2, 7 

 
- ±5.37 

 
±0.88 

 
- ±41.60 

 3, 6 
 

- ±2.87 
 

±1.22 
 

- ±10.13 
 4, 5 

 
- ±2.07 

 
±5.02 

 
- ±18.98 

 Twinning faults 
 

- ±4.48 
 

±1.91 
 

- ±15.83 
 

(r) Structure 12R(13)3: shifts (8π/9α(i))∆h3(h3) 
 
 

Zhdanov symbol of 
faults 

 
 
l 

 

 
 

12M±1 
 

h3 
 

12M±2 
 

 
 

12M±4 
 

 
 

12M±5 
 3 ( 2 1 ) = 1 ( 1 2 )  

 
1 
 

±1 
 

±�3 
 

±�3 
 

±1 
 1(5) 

 
2 
 

±�3 
 

±�3 
 

- ±73 
 

- ±�3 
 3 ( 2 ) , 1 ( 1 1 2 )  = 3 ±2 0 0 ±2 

1(7) 4 ±�3 - ±�3 ±�3 �3 
1 ( 2 )  

 
5 
 

±1 
 

- ±�3 
 

�3 
 

±1 
 1(3) 

 
6 
 

0 
 

0 
 

0 
 

0 
 1(4) 

 
7 
 

±1 
 

±�3 
 

±�3 
 

- ±l 
 1(111),3(22) = 

1(22) 
8 
 

�3 
 

±�3 
 

- ±�3 
 

±�3 
 1(6) 

 
9 
 

- ±2 
 

0 
 

0 
 

- ±2 
 1(1), 1(212) 

 
10 
 

- ±�3 
 

- ±�3 
 

±�3 
 

±�3 
 

( s )  Structure 12R(13)3: broadenings (4π/9a(i))∆w(h3) 
 
 

 
 

h3   
 

l 
 

12M ±1 
 

12M±2 
 

12M±4 
 

1 2 M± 5  
 

1 
 

4-�3 
 

3 
 

5 
 

4+�3 
 2,10 

 
0 
 

5 
 

0 
 

0 
 3, 9 

 
4 
 

6 
 

2 
 

4 
 4, 8 

 
5 
 

5 
 

5 
 

5 
 5, 7 

 
4+�3 

 
3 
 

i 
 

4-�3 
 6 

 
6 
 

2 
 

2 
 

6 
 

(t) Structure 12R(13)3: peak maxima [9α(i)
2/8ψ2(h3)]Imax(h3) 

Table 2 (cont.) 

 
 

h3 

 ±l 
 

±2 
 

±1 
1 

-        ±1 
1 

 ±1 
 

- ±l 
 

±1 - ±1 
 

Shifts 8/(9�3α)∆h3(h3)  
Broadenings 4π/(45α)∆w(h3)  
Peak maxima for non-twinning fault 

(102α2)/(2.74ψ2)/Imax(h3) 
Peak maxima for twinning fault 

(l02β2)/(4.28ψ2)Imax(h3) 

(m) Structure 3C  
 

 
 

h3 
 

  
 

l 
 

12M±1 
 

12M±2 
 

12M±4 
 

12M±5 
 1 

 
±(14- 3�3 )/ 169 

 
- ± 1/9 

 
±1/75 

 
- ± (14+3�3)/169 

 2, 10 
 

- 
 

- ±l/25 
 

±1/75 
 

- 
3, 9 

 
±(2-�3)/16 

 
- ±l/36 

 
±1/12 

 
- ± (2 + �3)/16 

 4, 8 
 

±(2-�3)/25 
 

- ±l/25 
 

±1/75 
 

- ± (2 + �3)/25 
 5, 7 

 
±(7-5�3)2/338 

 
- ±l/9 

 
±1/75 

 
-  ± (7 + 5�3)2/338 

 6 
 

±(2-�3)/36 
 

- ±l/4 
 

±1/12 
 

- ± (2 + �3)/36 
 Twinning 

faults 
 

±(2-�3)/16 
 

- ±l/16 
 

±1/48 
 

- ± (2 + �3)/l6 
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Table 2 (cont.) 
(u) Structure 15R(23)3: shifts (π/9α(i))∆h3(h3) 

Comparing expressions (21) and (23) we obtain 
 

 
 
 

 
 

 
 

 
 

 
 

Zhdanov symbol of 
faults 

 l 
 

15M±1 
 

15M±2
5M±4l

15M±4
5M 

15M±5
5M 

15M±7
M 3(31)=2(13),2(7) 

 
1 
 

±b 
 

±d 
 

±g 
 

±e 
 

±a 
3(l2)=2(2l)  

 
2 
 

±d 
 

±g 
 

(-)±a 
 

(-)±e 
 

(-)±b 
 3(4) 

 
3 
 

±f 
 

±c 
 

(-)±f 
 

0 
 

±c 
 2(4),3(111) 

 
4 
 

±g 
 

(-)±a 
 

±b 
 

±e 
 

(-)±d 
 2(23)=3(32),2(111) 

 
5 
 

±e 
 

(-)±e 
 

±e 
 

(-)±e 
 

±e 
 3(13) 

 
6 
 

±c 
 

(-)±f 
 

(-)±c 
 

0 
 

(-)±f 
 2(1) 

 
7 
 

±a 
 

(-)±b 
 

(-)±d 
 

±e 
 

±g 
 2(5) 

 
8 
 

(-)±a 
 

±b 
 

±d 
 

(-)±e 
 

(-)±g 
 2(112)=2(211),3(3) 

 
9 
 

(-)±c 
 

±f 
 

±c 
 

0 
 

±f 
 2(41)=3(14) 

 
10 
 

(-)±e 
 

±e 
 

(-)±e 
 

±e 
 

(-)±e 
 2(2) 

 
11 
 

(-)±g 
 

±a 
 

(-)±b 
 

(-)±e 
 

±d 
 3 (5), 2 (6) 

 
12 
 

(-)±f 
 

(-)±c 
 

±f 
 

0 
 

(-)±c 
 3(11)=2(11),2(212) 

 
13 
 

(-)±d 
 

(-)±g 
 

±a 
 

±e  ±b 
a = sin (π/15)= 0.2079,  b = sin (2π/ 15) =0.4067,  c = sin (3 π /15) =0-5878,  d = sin 
(4 π /15) =0.7431, e = sin (π /3)= 0.8660, f = sin (6 π /15) =0.9511, g = sin (7π /15) = 

0.9945. 

(v) Structure 15R(23)3: broadenings (π/α(i))∆w(h3) 
h3 

 l 
 

±1 
 

±2 
 

±4 
 

±5 
 

±7 
 i 

 
k 
 

m 
 

n 
 

p 
 

r 
 2.13 

 
m 
 

n 
 

r 
 

p 
 

k 
 3,12 s t s u t 

4,11 
 

n 
 

r 
 

k 
 

p 
 

m 
 5,10 

 
w 
 

w 
 

w 
 

w 
 

w 
 6,9 

 
t 
 

s 
 

t 
 

u 
 

s 
 7,8 

 
r 
 

k 
 

m 
 

p 
 

n 
 k=5.53, m=7.63. n=ll.39, p=l2.53, r=13.47, s=9.72, t=13.18, u=4.50, w=11.25. 

(w) Structure 15R(23)3: peak maxima [102α(i)
2/ψ2(h3)]Imax(h3) 

 
 

 
 

 
 

h3 
 

 
 

 
 / 

 
15M±1 
 

15M±2 
 

15M±4 
 

15M±5 
 

15M±7 
 i 

 
-±2.03 
 

±4.09 
 

-±7.19 
 

±3.06 
 

-±7.85 
 2, 13 

 
-±1.07 
 

±1.84 
 

-±5.14 
 

±3.06 
 

-±46.54 
 3,12 

 
-±O-66 
 

±1.37 
 

-±9.87 
 

±23.70 
 

-±8.20 
 4,11 

 
-±O-48 
 

±1.31 
 

-±30.49 
 

±3.06 
 

-±24.46 
 5, 10 

 
-±O-49 
 

±1.88 
 

-±7.37 
 

±3.79 
 

-±11.25 
 6,9 

 
-±O-36 
 

±2.52 
 

-±5.37 
 

±23.70 
 

-±15.07 
 7,8 

 
-±O-34 
 

±7.78 
 

-±16.20 
 

±3.06 
 

-±10.98 
 Twinning 

 
-±6-06 
 

±2.78 
 

-±7.24 
 

±8.89 
 

-±17.91 
 faults 

 
     

where the probability α of the occurrence of deformation 
faults in the 3 C structure is defined by the scheme 

 
However in the present paper we have obtained the relation 

 
where the probability α(11) of occurrence of the single non-
twinning faults with Zhdanov symbol (1) in the 3C structure 
is defined by the scheme 

 

 
The factor 2/3 occurs in (25) because the probabilities α(11) and α 
are defined differently. To describe the faultiness in 3C structures 
the first scheme is more natural and convenient than the second 
one. By contrast, for rhombohedral polytypes with period of 
identity greater than 3 the α(jk) probabilities are more suitable. 

The results obtained for 9R(12)3 and 12R(13)3 structures can 
be compared with results given by Lele (1974 a, b). For the 
9R(12)3 structure he obtained the following five types of faults: c, 
h, hc, hhc and 3c. The first three of these are non-twinning faults 
with Zhdanov symbols c = 1(3), hhc = 2(21) and 3c = 1(5). The 
next two are twinning faults with symbols hc = 2(2)1 and h = 
1(1)2. Forthe 12R(13)3 Lele considered the following seven 
types of faults: hhc, c, h, cch, 4h, 2hc and 4c. The first five of 
these are non-twinning faults with symbols hhc =1(2), c = l(4), 
4h = 1(111), 2hc = 1(22) and 4c = 1(7). The next two are 
twinning faults with symbols h =1(1)3 and cch = 3(3)1. 

Comparing the equations for shifts ∆h3 of the reciprocal-lattice 
points for 9R(12)3 and 12R(13)3 structures obtained from the 
tables with those given by Lele (1974a, b) , we can see complete 
conformity. The shifts of reciprocal-lattice points are unaffected 
by twinning faults. For non-twinning faults the coefficients 
determining the magnitude of shifts and the direction of shifts 
given by Lele (1974a) conform with the data in our tables. The 
coefficients given by Lele (1974a, b) can be obtained in the 
following way: 

 

 
Comparing the expressions for broadening ∆w of the reciprocal-
lattice points calculated from the tables for 9R(12)3 and 12R(13)3 
structures with expressions given by Leie (1974a, b), we can see 
some discrepancies. 

Thus we can see that the general theory published in this paper 
gives the same results as obtained earlier for particular simple 
cases. However, the present theory allows easy calculations for 
all more complicated cases. The possibility of quick 
identification of the type of fault without exact measurements of 
X-ray diffraction patterns is the advantage of our tables. It is 
sufficient to determine the reflexions which are unaffected by 
faults and reflexions which are broadened and shifted in 
particular directions. Comparing such simple measurements with 
the tables we can identify the type of faults in the vast majority of 
cases, when the diffraction effects are distinct. Examples of this 
analysis will be given in a forthcoming paper. It seems, however, 
that the analysis of fault structures is not possible in the case of 
crystals which have 
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total disorder (continuous diffuse lines instead of reflexions 
on X-ray diffraction photographs). 

Moreover, we must pay attention to the fact that the 
different types of faults exert a similar influence on different 
points of the reciprocal lattice. Thus it is not possible to 
distinguish between some types of faults on the basis of the 
above parameters. One could try also to find expressions for 
measurable parameters describing lattice-point asymmetry 
and changes in the integrated intensity, as was done by 
Prasad & Lele (1971). However, these changes and peak 
asymmetry are usually too small to be estimated with 
sufficient accuracy. Thus peak shifts and half widths are 
recognized to be the best measures of faultiness. This was 
shown by Pandey & Krishna (1976) for the 6H(33) structure. 

The limitations of our theory and inaccuracy in the results 
which follow from the assumption of small values of αjk are 
the next problem for discussion. We will show that this 
assumption does not limit the generality of the above theory 
because only small values of αjk have physical sense. In 
order to justify the above statement let us recall the definition 
of probability αjk. It is equal to the ratio of the number of 
layers followed by faults of a particular type to the full 
number of layers in the examined sequence. For example, in 
the following sequence of an 8H(44) structure with stacking 
faults [(4433443344443344443344) - in Zhdanov symbols] 

we have α(33) = 4/80 = 0.05. It is clear that consideration of 
these faults as the (33) type in 8H(44) structures makes 
sense only for 0^3) < 0-1. For α(33) > 0.1 the frequency of 
the occurrence of faults of (33) type is so great that the 
Zhdanov symbols (33) must be united in groups and it is 
necessary to interpret this sequence as a 6H(33) structure 
with stacking faults of (4) type. For example, it is necessary 
to interpret the sequence (33433433433334) as a 6H(33) 
structure with α(4) =4/46 but not as an 8H(44) structure with 
α(33) = 5/46. We expect that on X-ray diffraction 
photographs from the structure with this sequence the peak 
maxima will occur near the positions corresponding to 
those for a 6H(33) structure. 

The assumption of a random distribution of single faults 
does not limit our theory either. In general, when this 
assumption is not fulfilled another polytypic structure is 
formed. 
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